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Abstract

This document describes the theoretical basis of the cloud detection algorithm developed

by the University of Valencia for the study ‘Clouds Detection Algorithms for Proba-V’ in

the framework of the Proba-V Clouds Detection Round Robin (PV-CDRR) experiment.

Accurate and automatic detection of clouds in satellite scenes is a key issue for a wide

range of remote sensing applications. With no accurate cloud masking, undetected clouds

are one of the most significant sources of error in both sea and land cover biophysical

parameter retrieval. The objective of the algorithms presented in this document is to detect

clouds accurately providing a cloud flag per pixel. For this purpose, the method exploits

the information of Proba-V using statistical machine learning techniques to identify the

location of clouds present in Proba-V products.

1 Introduction

The main objective of this document is to define and implement a cloud masking scheme

for Proba-V. Images acquired by Proba-V instrument (Dierckx et al., 2014), which works in

the visible and infrared (VIS-IR) ranges of the electromagnetic spectrum, may be affected

by the presence of clouds. The corresponding cloud influence depends on the cloud type,

cloud cover, cloud height, and cloud distribution in the sky; e.g. thick opaque clouds impede

the incoming radiation reaching the surface, while thin transparent clouds contaminate the

data by photons scattered in the observation direction, or attenuate the signal by the

removal of photons in their travel to the sensor. As a result, non-masked clouds would lead

to significant errors in retrieved bio-physical parameters.

1.1 Review of Cloud Masking Methods

Cloud masking approaches, also referred to as cloud masking or detection, are generally

based on the assumption that clouds present some useful characteristics for its identification:

clouds are usually brighter and colder than the underlying surface, the spectral response

is different from that of the surface covers, and cloud height produces a shorter optical

path thus lowering atmospheric absorptions. The simplest approach to cloud detection in a

scene is the use of a set of static thresholds (e.g. over reflectance or temperature) applied to

every pixel in the image, which provides a cloud flag (binary classification) (Wang and Shi,

2006). However, these methods can fail for several reasons, such as subpixel clouds, high

reflectance surfaces, illumination and observation geometry, sensor calibration, variation of

the spectral response of clouds with cloud type and height, transparency of clouds, etc.
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1. Introduction

• On the one hand, the thickest clouds should be easily detected and masked out from

visible and near-infrared Proba-V bands, but this is not true for thin clouds, which

are semitransparent to solar radiation. Moreover, bright pixels, such as ice and snow

in the surface, can be misclassified as clouds. Bright land covers and clouds have a

similar reflectance behavior, thus thresholds on reflectance values do not solve the

problem.

• On the other hand, signal coming from optically-thin semitransparent clouds is mostly

affected by surface contribution, and it ranges from very low to extremely high values

depending on whether the cloud is over water or ice, respectively. Therefore, they are

extremely difficult to detect from reflectance properties in VNIR data.

These problems preclude the use of simple approaches based on static thresholds and sug-

gest the used of more advanced cloud maskinging methods (Gómez-Chova et al., 2007a,b).

In the literature, the simplest approach to mask clouds in a particular scene is the use of

a set of static thresholds (e.g. over features such as albedo or temperature) applied to every

pixel in the image and ultimately providing a binary flag (Wang and Shi, 2006). These

methods can fail for several reasons, such as subpixel clouds, high reflectance surfaces, illu-

mination and observation geometry, sensor calibration, variation of the spectral response of

clouds with cloud type and height, etc. (Simpson et al., 1998). Spatial coherence methods

have an advantage over static threshold methods because they use the local spatial struc-

ture to determine cloud free and cloud covered pixels. Usually, these algorithms are based

on extracted textural features (Tian et al., 1999; Christodoulou et al., 2003), contextual

approaches (Papin et al., 2002), or simple thresholds applied to the spatial variability of

spectral bands (Martins et al., 2002), which is mainly applicable over the ocean where the

surface background is sufficiently homogeneous. However, spatial coherence methods can

fail (Jones et al., 1996) when the cloud system is multi-layered (which is often the case),

the clouds over the scene are smaller than the instrument spatial resolution, or the scene

presents cirrus clouds (which are not opaque). As a consequence, researchers have turned to

developing adaptive threshold cloud-masking algorithms (Simpson et al., 1998; Di Vittorio

and Emery, 2002; Yang et al., 2007). Some other algorithms take advantage of the multi-

angular (Yang et al., 2007; Mazzoni et al., 2007) or the multi-temporal (Saitwal et al., 2003)

information depending on the instrument characteristics and the application constraints.

Given the extreme complexity of cloud masking, most of the operational cloud masking

applications of current satellite multispectral systems, such as Moderate Resolution Imag-

ing Spectroradiometer (MODIS) (Ackerman et al., 1998; Platnick et al., 2003), Advanced

Very High Resolution Radiometer (AVHRR) (Saunders and Kriebel, 1988), Along Track

Scanning Radiometer (ATSR) (Simpson et al., 1998), POLarization and Directionality of

the Earth’s Reflectances (POLDER) (Buriez et al., 1997), or MERIS (Santer et al., 1997),
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consist in a series of cloud detection threshold tests, which can vary depending on surface

type, solar illumination, geographic location, or climatological criteria. In particular, cur-

rent Proba-V cloud detection uses multiple thresholds applied to the blue and the SWIR

spectral bands (Lisens et al., 2000), but the definition of global thresholds is practically im-

possible. Hence, for next Proba-V reprocessing (Wolters et al., 2015), monthly composites

of cloud-free reflectance in the blue band are used to define dynamic thresholds depending

on the land cover type.

In this context, few works using more sophisticated machine learning tools have been

presented so far, such as Bayesian methods (Murtagh et al., 2003; Li et al., 2003; Merchant

et al., 2005), fuzzy logic (Ghosh et al., 2006), artificial neural networks (Yhann and Simpson,

1995; Tian et al., 1999; McIntire and Simpson, 2002; Torres Arriaza et al., 2003), or recently

kernel methods (Srivastava and Stroeve, 2003; Lee et al., 2004; Mazzoni et al., 2007; Gómez-

Chova et al., 2007b). The proposed cloud masking method might take the best elements

of these algorithms, but basically it must be an advanced non-linear method capable of

exploiting the information of Proba-V features in order to improve the cloud masking

products.

2 Proba-V Data

Proba-V instrument presents a limited number of spectral bands (Blue, Red, NIR and

SWIR) which makes cloud detection particularly challenging since it does not present ther-

mal channels or a dedicated cirrus band.

The main characteristics of the Proba-V products are the following:

• Swath 2250 km

• Resolution 100 m at nadir, 350 m across full field of view

• Spectral bands:

– Blue (438-486nm)

– Red (615-696nm)

– NIR (772-914nm)

– SWIR (1564-1634nm)

In particular, for this Round Robin exercise, we consider as input Proba-V Level 2A

products with TOA reflectance in the four Proba-V bands, radiometrically and geometri-

cally corrected and resampled at 333m.
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2. Proba-V Data

The available data set consists of 331 products acquired in four days covering the four

seasons: 21/03/2014, 21/06/2014, 21/09/2014, and 21/12/2014. From this dataset, a

reduced set of Proba-V data for a number of representative sites worldwide (Fig. 1) is used

to train the algorithm and validate its performance.

Figure 1: Proba-V images selected for validation of the cloud masking algorithm: geo-

graphic location and dates.

2.1 Manually Labelled Training Set

In order to train statistical machine learning models from real data, a representative

number of samples have to be labelled as cloud-contaminated or cloud-free samples. To

label in a semi-automatic way a sufficient number of pixels from the Proba-V images, we

have adapted the user-driven methodology proposed in Gómez-Chova et al. (2007a) for

MERIS to the Proba-V images, where the labeling of cloud clusters found in the image is

done by the user.

Figure 2 shows the interactive interface used to generate the Ground Truth by an expert

user. In addition to label the clusters as ‘cloudy’ or ‘cloud-free’, it allows to label the pixels

as ‘bright clouds’, ‘clouds’, ‘cirrus’, ‘shadows’, ‘vegetation’, ‘soil’, ‘water’, ‘ice/snow’, ‘sand’;

which can be a useful information for the generation of a comprehensive training set with

samples of all relevant land-covers.
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Figure 2: Manual Ground Truth generation: cloudy/cloud-free labels

Figure 3 shows an example of the resulting products generated using this user-driven

methodology. First row shows a) the RGB false color composite and b) the class map of

the labels of the clusters. The second row shows c) the membership (posterior probability

map) of each pixel to the cloud clusters, which is also useful to include different types of

cloudy pixels in the training set, and d) the spatial distribution of all clusters.

3 Feature Extraction, Feature Selection, and Sample

Selection

The following sections describe the feature extraction, feature selection, and sample

selection approaches applied to the dataset in order to provide a high quality training set

to the machine learning algorithms.

3.1 Feature Extraction

Several physically-inspired features can be extracted from the spectrum before applying

the classification methods in order to improve their performance.

The measured spectral signature depends on the illumination, the atmosphere, and the

surface. Figure 4 shows Proba-V channel locations compared with the spectral curve of

healthy vegetation and bare soil.
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3. Feature Extraction, Feature Selection, and Sample Selection

Figure 3: Manual Ground Truth validation: visual inspection and clustering

In this project, we take advantage of previous research and, rather than working with

the spectral reflectance only, physically-inspired features are extracted in order to increase

the separability of clouds and surface covers. A detailed analysis of the most important

extracted features follows.

Spectral Brightness and Whiteness Regarding the reflectance of the surface, one of

the main characteristics of clouds is that they present bright and white spectra (Fig. 5).

We can exploit Proba-V channels for extracting information about the target reflectance,

i.e. cloud brightness and cloud whiteness for cloudy pixels:
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Figure 4: Proba-V channel locations (boxes) superimposed to a reflectance spectra of healthy

vegetation and bare soil (dash-dotted line).
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• A bright spectrum means that the intensity of the spectral curve (related to the

albedo) should present relatively high values. Therefore, cloud brightness is calculated

for each pixel as the integral of spectrum, fBr =
∫
ρ(λ)dλ, which is approximated

through trapezoidal numerical integration:

f̂Br =
1

λmax − λmin

∑
λi

ρ(λi+1) + ρ(λi)

2
(λi+1 − λi), (3.1)

which has the same units as ρ(λ), and differs from the average of the spectral channels

since it takes into account the distribution of the energy along the spectrum.

• A white spectrum means that the spectral signature must be flat along the spectrum.

The first derivative of the spectral curve should present low values, but noise and

calibration errors may reduce the accuracy in the estimation of the spectrum flatness

when computing the spectral derivative in channels with similar wavelengths. There-

fore, we compute for each pixel the deviation from the flatness as the (trapezoidal

approximate) integral of e(λ) = |ρ(λ)− f̂Br|:

fWh =
1

λmax − λmin

∑
λi

e(λi+1) + e(λi)

2
(λi+1 − λi) (3.2)

Further surface features can be obtained by considering independently the VIS and NIR

spectral ranges, where surface covers present different reflectance properties. Therefore,

instead of working with fBr and fWh, we can obtain 2 + 2 features from (3.1) and (3.2)

respectively: fBr,V IS and fWh,V IS; and fBr,NIR and fWh,NIR. For example, clouds over land

should be better recognized in fBr,V IS than in fBr,NIR since land covers have less reflectance

in the VIS range, while the opposite is true for clouds over sea.

Spatial Features Together with the spectral features, spatial features are extracted at

different scales: the mean (µ) and standard deviation (σ) are computed for each pixel-based

feature at two different scales in 3x3 and 5x5 windows.

List of Extracted Features

Previous sections have introduced most of the characteristics that are useful to discrim-

inate clouds from surface. However, these are only some of the features presented in the

literature to identify clouds. The final set of features that are analyzed in the frame of this

project are listed in Table 1.

Summarizing, we consider the four Proba-V spectral channels (4), the spectral features

described in Table 1 (10), and the mean (µ) and standard deviation at two different scales,
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3. Feature Extraction, Feature Selection, and Sample Selection

New Zealand 2014/09/21 Brightness Whiteness

Figure 5: Cloud brightness and whiteness features extracted from the TOA reflectance of a

Proba-V image.

Table 1: Cloud features extracted from Proba-V images.

Cloud Feature Feature Channels

Brightness fBr (Blue,Red,NIR,SWIR)

Brightness VIS fBr,V IS (Blue,Red)

Brightness NIR fBr,NIR (NIR,SWIR)

Whiteness fWh (Blue,Red,NIR,SWIR)

Whiteness VIS fWh,V IS (Blue,Red)

Whiteness NIR fWh,NIR (NIR,SWIR)

Snow NDSI f(Blue−NIR)/(Blue+NIR) (Blue,NIR)

Snow NDSI f(Blue−SWIR)/(Blue+SWIR) (Blue,SWIR)

Red-SWIR ratio fRed/SWIR (Red,SWIR)

NDVI f(NIR−Red)/(NIR+Red) (Red,NIR)
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which are computed for each pixel-based feature ((4 + 10) × 4). That results in a total

number of 70 possible input features (4 reflectance bands, 10 spectral features, 56 spatio-

spectral features).

3.2 Feature Selection

Machine learning methods have proven to be effective techniques in classification of re-

mote sensing data. However, one of the main problems with multispectral image processing

is the huge amount of data involved. Certainly, this is a major problem for pattern recog-

nition methods, since they are sensitive to problems associated to high-dimensional feature

spaces - known as Hughes phenomenon or curse of dimensionality (Hughes, 1968). The

close relationship between the complexity of the classifier and the size of the training set

suggests the idea of a prior reduction of the input space in order to avoid wrong estimations

of the classifier parameters (Fukunaga and Hayes, 1989). This objective can be achieved by

two different ways. The first one is to identify those variables that do not contribute to the

classification task and to ignore them (feature selection). The second approach is to find

a transformation to a lower dimension feature space while retaining the useful information

for the classification problem (feature extraction).

Feature selection methods have several advantages compared to feature extraction: data

transmission and storage (only selected features are required); interpretability of results (the

selected features are spectral bands with physical meaning); and extrapolation of results

to other spectrometers with slightly different spectral bands. We propose a dimensionality

reduction strategy that eliminates redundant information, by means of local correlation

criterion between contiguous spectral bands, and a subsequent selection of the most dis-

criminative features based on combination of several feature ranking methods.

The Feature Selection Problem

The Feature Selection Problem (FSP) in a ‘learning from samples’ approach can be

defined as choosing a subset of features that achieves the lowest error according to a certain

loss functional. Following a general taxonomy, the FSP can be tackled using filter (Blum

and Langley, 1998) and wrapper (Kohavi and John, 1997) methods. Filter methods use

an indirect measure of the quality of the selected features, e.g. evaluating the correlation

function between each input feature and the observed output. A faster convergence of the

algorithm is thus obtained. On the other hand, wrapper methods use as selection criteria

the goodness-of-fit between the inputs and the output provided by the learning machine

under consideration, e.g. a neural network. This approach guarantees that, in each step of

the algorithm, the selected subset improves performance of the previous one. Filter methods
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3. Feature Extraction, Feature Selection, and Sample Selection

might fail to select the right subset of features if the used criterium deviates from the one

used for training the learning machine, whereas wrapper methods can be computationally

intensive since the learning machine has to be retrained for each new set of features.

In the first part of the study, we use filter methods to obtain a ranking of the most

relevant important bands. With these methods we quantitatively measure the relationship

between the spectral bands (input features) and the presence vs. absence of clouds.

Filter Methods: Feature Ranking Methods

Several additional methods are used for feature ranking. They quantitatively measure

the relationship between each band and the desired output and rank key features by class

separability criteria (independent evaluation criterion for binary classification). Since they

work under different learning paradigms (multivariate statistics, information theory, and

detection and estimation frameworks), the obtained pooled of ranking methods may be

potentially useful.

• The t-test estimate. Absolute value two-sample t-test with pooled variance estimate

(Liu and Motoda, 1998).

• The classification Chernoff bound. This is the well-known Bhattacharyya distance.

Minimum attainable classification error, also known as the Chernoff bound (Theodor-

idis and Koutroumbas, 1999).

• The Wilcoxon test. This method is basically the absolute value of the u-statistic of a

two-sample unpaired Wilcoxon test, also known as the Mann-Whitney test (Liu and

Motoda, 1998).

• The ROC curve. This is the area under the empirical receiver operating characteristic

(ROC) curve (Theodoridis and Koutroumbas, 1999).

• The Kullback-Leibler divergence. This is the relative entropy, also known as Kullback-

Lieber distance or divergence (KLD). The measure, which is based on solid informa-

tion theory foundation, yields an estimate of shared information content between each

band and the output (Liu and Motoda, 1998; Peng et al., 2005).

• The minimum redundancy and maximal relevance (mRMR) criterion. The method

jointly optimizes the maximal relevance of the features and the minimum redundancy

among them. The Max-Relevance is approximated with the mean value of all mutual

information values between individual features and the observed class label. When
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two features highly depend on each other, the respective class-discriminative expres-

sive power should not change if one were removed. Therefore, a Min-Redundancy

condition can be added to select mutually exclusive features (Peng et al., 2005).

Note that ‘t-test’, ‘entropy’, and ‘Bhattacharyya’ methods assume normal distributed

classes while ‘ROC’ and ‘Wilcoxon’ are non-parametric tests. Also, we should stress that

most tests are feature independent.

Wrapper Methods: Sequential Feature Selection

Most of the presented ranking methods in the previous section analyze each band inde-

pendently and using as selection criteria measures of class separability instead of using the

classification accuracy directly. In this section, more attention is paid to wrapper methods

for feature selection (that jointly analyze the feature space) in the results. Therefore, to

conclude the analysis about the spectral bands relevance, we explore a wrapper feature se-

lection method that uses as selection criteria the classification accuracy of the classification

method for all the possible number of selected bands and most band combinations.

The Sequential Forward Selection (SFS) algorithm identifies those bands that better

discriminate among classes in a two-stage iterative feature selection process. Firstly, a

search strategy for feature group selection is carried out, and secondly, the objective func-

tion that evaluates the different subgroups is calculated. In our case, we use as objective

function the classification accuracy (kappa statistic) of the classifier trained with the spec-

tral bands and features under study. The SFS method will produce a hierarchy of the input

bands by selecting first the best individual band and then adding the next best band (given

the already selected bands) for each dimension. The SFS algorithm presents the following

useful characteristics:

• Sequential: Sequential algorithms present better computational requirements than

the algorithms that perform an exhaustive search. The latter are infeasible working

with a high number of input features (exponential growth).

• Forward: The forward search begins with one variable and continues adding features.

It presents a couple of practical advantages with regard to the backward search.

Firstly, if the initial dimension is very high, the calculation of the criterion can be

complex or impossible (for example the estimation of the covariance matrix from few

samples). Secondly, if the process is long and interrupted, the best subsets for small

dimensions are already obtained.

• Selection: Feature selection is well-suited to our problem since results can be directly

interpreted and extrapolated to other sensors or instrument configuration changes.
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3. Feature Extraction, Feature Selection, and Sample Selection
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Figure 6: Ranking of the extracted features:relative importance between 0 and 1.

Feature Selection Results

Attending to the ranking of the features, one can evaluate the performance of different

classifiers for different subsets of relevant features, which are selected using both filter

and wrapper approaches. The set of features analyzed consist of the 4 Proba-V TOA

reflectance bands, the 10 cloud features extracted from spectral bands (pixel-based), and

the corresponding 14×4 spatial features (see Table 1 for details).

Figure 6 shows the relative importance ([0,1]) of the extracted features. Using this

ranking we define two sets with the first 20 and 40 best features that will be compared

in the classification experiments. The ten most relevant features are: ρTOA,Blue, σ
5×5
Wh,NIR,

fWh,V IS, fRed/SWIR, µ5×5
(NDV I), σ

5×5
(NDV I), µ

5×5
Red/SWIR, f(Blue−NIR)/(Blue+NIR), µ

3×3
Wh,V IS, µ5×5

Wh,V IS.

3.3 Sample Selection

The samples of the dataset can be used to train a supervised classifier taking into

account the sample labels (‘cloudy’ or ‘cloud-free’). However, when the number of training

samples is high, the training of the model can be computationally time consuming. In

this cases, the number of samples used in the training is reduced by means of subsampling

or sample selection techniques. For this purpose, we reduce the number of samples while

preserving the original data distribution and complexity.

17



4 Cloud Masking Algorithm

The method should be capable of detecting clouds accurately. The cloud masking pro-

cess relies on the extraction of meaningful physical features (e.g. brightness, whiteness,

temperature) that are combined with spatial features to increase the cloud detection ac-

curacy. The supervised classifiers to be developed and tested on this data should allow

the use of a high number of input features and allow an easy integration of heterogeneous

sources of information.

Firstly, a feature extraction based on meaningful physical facts is carried out (clouds are

bright, white, high, etc.). Then, a supervised pixel-based classification, based on the TOA

reflectance and on a manually labeled training set, is applied to these features providing

the pixel label (cloud or cloud free).

4.1 Supervised Classification Algorithms

The extracted features and the original spectral bands are used as inputs of advanced

supervised classification algorithms, which are required to solve complex classification prob-

lems such as cloud masking.

The detection of clouds can be considered as a two-class classification problem. In these

problems, we are given a set of ` labeled (training) samples {xi, yi}`i=1, where xi ∈ Rd is

defined in an input space X , and yi ∈ {0, 1} belongs to the observation (output) space

(‘cloudy’ or ‘cloud free’).

In this project, different classification and regression methods are analyzed: decision

trees (Breiman et al., 1984), support vector machines (SVMs) (Vapnik, 1998; Schölkopf

and Smola, 2002), and multilayer perceptron (MLP) neural networks (Duda et al., 1998;

Haykin, 1999).

Decision Trees (TREE) Decision trees are simple, yet powerful, non-parametric clas-

sification techniques. There are different types of decision trees, such as Classification

and Regression Trees (CART) (Breiman et al., 1984), Interactive Dichotomizer Version 3

(ID3) (Quinlan, 1986), and C4.5 algorithm (Quinlan, 1993). In this work, CART is used

to classify cloudy pixels.

CART algorithm is a tree graph structure with a sequence of nodes that are partitioned

or split into two branches by means of decision rules and each terminal node (leaf) is

classified with the predicted value for that node. For each branch node, the left child node

corresponds to the points that satisfy the condition, and the right child node corresponds to

the points that do not satisfy such condition. CART presents some advantages over other

18



4. Cloud Masking Algorithm

classification or regression techniques as high generalization, capability to divide a complex

problem into a collection of simpler decisions making tree models simple to understand

and interpret. A common problem of classification algorithms is the overfitting problem

(Hughes’ phenomenon) that produces poor generalization. Pruning and cross-validation

methods are usually employed on CART algorithms to avoid over-fitting. In this work, a

10-fold cross-validation procedure is used to find the minimum-cost tree and to estimate

the best level of pruning. Tree is pruned based on an optimal pruning scheme that first

prunes branches giving less improvement in error cost.

Support Vector Machines (SVM) The Support Vector Machine (SVM) binary classi-

fier is a statistical learning algorithm based on constructing a maximum margin separating

hyperplane in a reproducing kernel Hilbert space (Vapnik, 1995). SVMs allow the use of a

high number of input features as it combats the curse of dimensionality efficiently. In ad-

dition, they provide simple (sparse) solutions that can be interpreted (1) by inspecting the

weights associated to the most relevant examples, and (2) by applying traditional saliency

techniques.

Notationally, be V a set of N observed and labeled data, V =
{

(x1, y1) , . . . , (xN , yN)
}

,

where xi ∈ Rn and yi ∈ {−1,+1}. Be φ(xi) a nonlinear transformation to a (gener-

ally unknown) higher dimensional space RB, where a separating hyperplane is given by

〈φ(xi),w〉 + b = 0. The key in non-linear SVM is that both the solution and the solving

procedure can be expressed as a function of dot products among samples, and thus, these

products can be computed in the mapped space without even knowing the mapping φ. The

dot products are known as kernel, K(xi,xj) = 〈φ(xi),φ(xj)〉 and has to fulfill Mercer’s

conditions, that is, the matrix has to be positive (semi-)definite for the formulation to be

valid.

In this work, we use a Gaussian RBF kernel, given by K(xi,xj) = exp (−‖xi−xj‖2
2σ2 ); and

free SVM parameters are selected by following an 8-fold cross-validation procedure.

Multilayer Perceptron (MLP) The well-known MLP neural network Duda et al.

(1998); Haykin (1999), which has been a traditional approach for supervised cloud classi-

fication (Yhann and Simpson, 1995; Tian et al., 1999; McIntire and Simpson, 2002; Tor-

res Arriaza et al., 2003; Preusker et al., 2006), is also included in the comparison. The

MLP is a feed-forward artificial neural network model that produces flexible input-output

mappings. This artificial neural network (ANN) attempts to separate samples belonging

to different classes by mapping samples xi to a one-dimensional output space oi, through

a highly non-linear mapping function consisting in a net of interconnected neurons with a

given activation function arranged in layers and connected by synaptic weights, where ŷi = 1
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(cloudy) when oi is over a given threshold b = 0.5 (for our two-class problem). The MLP are

trained using the Levenberg-Marquardt algorithm, which is more efficient in terms of com-

putational cost than the standard back-propagation algorithm. The Levenberg-Marquardt

algorithm approaches the Hessian matrix following a Newton-like updating, and thus it is

no longer necessary to compute the whole Hessian matrix. This method is specially fast for

training moderate-sized feedforward neural networks (Hagan and Menhaj, 1994). Different

number of hidden neurons in the hidden layer are tested (2 to 30) and the best architecture

is selected evaluating the averaged 3-fold cross-validation kappa statistic. In all the cases,

the neurons of the hidden layer present the hyperbolic tangent sigmoid activation function

while the neuron of the output layer presents a linear output function in order to better

analyze the distribution of the output values, oi, and to directly combine the outputs of

several ANN.

4.2 Cloud Classification Results

In this section, the performance of different classifiers is evaluated for different subsets

of spectral bands and extracted features.

Classification methods comparison

In order to decide which features are more relevant, the information of the spectral

channels and the extracted features for cloud detection is analyzed in terms of classification

accuracy of classification trees (TREE), multilayer perceptron (MLP) ANN, and support

vector machines (SVM ) in our problem. In the following experiments, classifiers are

trained with different numbers of training samples and different combinations of features.

Figure 7 shows the Overall Accuracy (OA) for each number of features, i.e. the classification

accuracy of the TREEs, MLPs and SVMs for the sets of selected features.

Several conclusions can be extracted from Fig. 7. Classification trees are very efficient

classification algorithms but provide the less accurate detection results for all cases. SVMs

provide excellent results when few training samples are available but present a huge com-

putational cost when the number of samples increases (no SVM models have been trained

for more than 15000 training samples per class). Finally, MLP neural networks provide ex-

cellent cloud detection accuracy and the extracted spatio-spectral cloud features drastically

improve results, obtaining the best results with the top 40 selected features (sec. 3.2).
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Figure 7: Overall Accuracy (OA%) over the test sets for the analyzed methods (TREE,

SVM and MLP). The number of input features (spectral, spatial, and all features) and

training samples per class (1000, 2000, 5000, 10000, 15000, 20000, 25000, 30000, 50000) vary

for each test set.

Selected classifier performance

In the following, we focus only on MLPs, which have offered improved performance,

using the top 40 selected features for Proba-V. Also, and given that accuracy is not improved

too much with an increasing number of samples, we concentrate on using 50× 103 training

samples per class in all cases and classification accuracy is computed using 380× 103 test

samples.

Figure 8 shows the Overall Accuracy (OA%) and Cohen’s Kappa Statistics (κ) for the 54

validation images that have been manually labeled in order to be used as reference (ground

truth). In this plot, one can observe that in most images the cloud detection accuracy is

higher than 90%. This confirms that the trained MLP provides an excellent generalization

over the analyzed images. However, it is important to remark that we are using as reference

cloud mask a ‘ground truth’ that has been manually generated. Hence, the risk of learning

and reproduce the errors present in the ground truth there always exists.

Finally, in order to better analyze the type of errors that we are committing, Table 2

shows the overall Confusion Matrix for the 54 validation images manually labeled. One can

observe that the proposed method provides a balanced number of false negatives (FN) and
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Figure 8: Overall Accuracy (OA%) and Kappa Statistics (κ) for the 54 validation images

that have been manually labeled in order to be used as reference (ground truth).

false positives (FP), although the number of FN is relatively higher. However, the average

Overall Accuracy for all images is 93% and we can consider that the agreement between

the predicted cloud masks and the generated ground truth is high enough.

Table 2: Confusion Matrix for the 54 validation images that have been manually labeled in

order to be used as reference (ground truth). True Negatives (TN), False Negatives (FN),

True Positives (TP), False Positives (FP), Producer Accuracy (PA), User Accuracy (UA),

and Overall Accuracy (OA).

Manual Labels

Cloud-free Cloudy Total

Predicted Cloud-free TN:345308804 FN:25205511 370514315 PA:93%

Predicted Cloudy FP:9133061 TP:191024152 200157213 PA:95%

Total 354441865 216229663 536332956

UA:97% UA:88% OA:93%

Cloud Product Validation Examples

An example of the results is shown in Fig. 9. In this figure, the proposed cloud mask is

benchmarked against the manually generated ‘ground truth’ for a Proba-V product. This

image has been selected because it illustrates most common cloud detection problems (e.g.

cloud borders, thin clouds, ice/snow covers). In these plots, pixels detected as cloudy pixels

by the cloud detection method but labeled as cloud free in the ‘ground truth’ are plotted in

blue, while discrepancy pixels classified as cloud free but marked as clouds in the ‘ground

truth’ are shown in orange.
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4. Cloud Masking Algorithm

RGB 2014/09/21 (230104) Masks Comparison

Manual Ground Truth Predicted Cloud Mask

Proposed / Reference: Cloud / Cloud Land / Cloud Cloud / Land Land / Land

Comparison Color:

Figure 9: Cloud detection example showing the RGB false color composite, the manually

generated ground truth, the cloud mask obtained with the final MLP classifier, and the

comparison of the ‘manual ground truth’ with the ‘Proba-V Cloud Flag’: discrepancies are

shown in blue when proposed method detects cloud and in orange when pixels are classified

as cloud-free.
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The pixels detected as cloud-free by the algorithm that are labeled as cloudy in the

‘ground truth’ (orange) show a good agreement with snow and glaciers over mountains in

the South Island of New Zealand, and with some parts of the coastline. Therefore, one can

assume that these differences are not errors but cloudy pixels, and that proposed method

provides an accurate recognition in these difficult cases, although it is true that some thin

cloud borders are also detected as cloud-free. However, in these cases a spatial growing of

the cloud mask should easily improve the results. Validation results for the complete list

of manually labeled Proba-V images can be found in the Appendix.

Cloud Mask Product

The output cloud product for the developed cloud masking method is provided in a

HDF5 file that consists of a new band with the cloud flags. This band has the same spatial

coverage than the original image and provides a prediction (‘cloudy’ or ‘cloud-free’) only

over pixels with valid values for the four Proba-V spectral channels. Information about the

corresponding flags coding is provided in Table 3.

Table 3: Bands of the generated cloud product.

Band Type Unit Description

cloud mask int16 1 Cloud flags (1: cloudy pixel, 0: cloud-free pixel, -1: invalid pixel).

5 Summary and Conclusions

In this document, a methodology that faces the problem of accurately identifying the

location of clouds in Proba-V images is described. The cloud masking algorithm is based

on simple spatio-spectral physical features, which are intended to increase separability be-

tween clouds and ground covers, and are extracted from the converted top of atmosphere

reflectance in order to reduce dependence on illumination and geometric acquisition con-

ditions. An supervised classification is performed based on the selected extracted features

and selected training samples covering most relevant image conditions, background sur-

faces, and cloud types. In particular, several machine learning methods have been trained

using different sets of input features and different sets of training samples in order to se-

lect the best empirical model. The final implemented method is based on artificial neural

networks trained with manually labeled real data.

The performance of the method has been tested on a large number of real images and

on scenes presenting most critical cloud detection problems, and results show an accurate

discrimination of thin clouds, cloud borders, and bright surfaces.

24



Bibliography

Bibliography

Ackerman, S., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L. (1998).

Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research,

103(D24):32141–32157.

Blum, A. and Langley, P. (1998). Selection of relevant features and examples in machine

learning. Artificial Intelligence, 97:245–271.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and

Regression Trees. Chapman & Hall/CRC, Monterey, CA.

Buriez, J. C., Vanbauce, C., Parol, F., Goloub, P., Herman, M., Bonnel, B., Fouquart, Y.,

Couvert, P., and Seze, G. (1997). Cloud detection and derivation of cloud properties

from POLDER. Int. Journal of Remote Sensing, 18(13):2785–2813.

Christodoulou, C. I., Michaelides, S. C., and Pattichis, C. S. (2003). Multifeature Texture

Analysis for the Classification of Clouds in Satellite Imagery. IEEE Trans. on Geoscience

and Remote Sensing, 41(11):2662–2668.

Di Vittorio, A. and Emery, W. (2002). An automated, dynamic threshold cloud-masking

algorithm for daytime AVHRR images over land. IEEE Trans. on Geoscience and Remote

Sensing, 40(8):1682–1694.

Dierckx, W., Sterckx, S., Benhadj, I., Livens, S., Duhoux, G., Achteren, T. V., Francois,

M., Mellab, K., and Saint, G. (2014). Proba-v mission for global vegetation monitor-

ing: standard products and image quality. International Journal of Remote Sensing,

35(7):2589–2614.

Duda, R. O., Hart, P. E., and Stork, D. G. (1998). Pattern Classification and Scene

Analysis: Part I Pattern Classification. John Wiley & Sons, 2nd edition.

Fukunaga, K. and Hayes, R. (1989). Effects of sample size in classifier design. IEEE Trans.

on Pattern Analysis and Machine Intelligence, 11(8):873–885.

Ghosh, A., Pal, N., and Das, J. (2006). A fuzzy rule based approach to cloud cover

estimation. Remote Sensing of Environment, 100:531–549.
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Appendix A. Validation for all manually labeled images

This Appendix presents the validation results for all manually labeled Proba-V images.

First column shows the RGB composite. Second column shows the cloud mask obtained

with the final MLP classifier. Third column shows the comparison of the ‘manual ground

truth’ with the ‘Proba-V Cloud Flag’. Discrepancies are shown in blue when proposed

method detects cloud and in orange when pixels are classified as cloud-free.
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